5G Technology

What is 5G technology?

Digital inclusion project in the Peruvian Amazon. Rural areas with less existing infrastructure are likely to be left behind in 5G development. Photo credit: Jack Gordon for USAID / Digital Development Communications.
Digital inclusion project in the Peruvian Amazon. Rural areas with less existing infrastructure are likely to be left behind in 5G development. Photo credit: Jack Gordon for USAID / Digital Development Communications.

5G refers to the fifth generation of cellular network technology. It is the next iteration in mobile technology, but there is not yet an official, finalized standard for it. Therefore, 5G refers to a handful of different technologies that are anticipated, but not guaranteed, to emerge in the next decade and will form a web of “super connectivity” for specific use cases and contexts. 5G aims above all to connect devices to one another (the Internet of Things ). However, currently there is a large gap between marketing and reality that this resource will explain. This video by Engadget is an excellent introduction to 5G technology and the excitement and caution around it.

As of 2020, there is not yet an official 5G standard from the overseeing authority, the United Nations International Telecommunications Union (ITU), and telecommunications carriers do not yet agree on what 5G means. Once 5G is fully standardized and when the infrastructure necessary for it is in place, 5G will further enable “smart homes”, “smart cities ”, autonomous vehicles, and other internet-related automation . As opposed to previous cellular technology, 5G is not designed primarily to connect people, but rather to connect devices.

What do we mean by “G?”

“G” refers to generation. “G” indicates a threshold, when a significant shift has finally been achieved in capability, architecture, and technology. These titles are given by the telecommunications industry through the standards authority known as 3GPP. 3GPP creates technical specifications every ten years or so, hence the use of the word “generation”. The acronym IMT is also used, which stands for International Mobile Telecommunications, along with the year that standard became official: For example, 3G is also called IMT 2000.

1GAllowed analogue phone calls; brought mobile devices (mobility)
2GAllowed digital phone calls and messaging; allowed for mass adoption, and eventually enabled mobile data (2.5G)
3GAllowed phone calls, messaging, and internet access
3.5GAllowed stronger internet
4GAllowed faster internet, (better video streaming)
5G“The internet of things”

Will allow devices to connect to one another
6G“The internet of senses”

Little is yet known

This video gives a simplified overview of 1G-4G.

Cellphone shop in Tanzania. 5G technology requires access to 5G-compatible smartphones and devices. Photo credit: Riaz Jahanpour for USAID Tanzania / Digital Development Communications.
Cellphone shop in Tanzania. 5G technology requires access to 5G-compatible smartphones and devices. Photo credit: Riaz Jahanpour for USAID Tanzania / Digital Development Communications.

There is a gap in many developing countries between the cellular standard that users subscribe to and the standard they actually use: many subscribe to 4G but, because it does not perform as advertised, they switch back to 3G. This switching is not always evident to the consumer, and it may be harder for the consumer to notice this “fallback” than with previous networks.

Even once the official standard of 5G is decided on, the infrastructure is in place and users have access to it through appropriate devices, the product is not guaranteed to work as promised: in fact, chances are it will not. 5G will still rely on 3G and 4G technologies, and carriers will still be operating their 3G and 4G networks in parallel.

How does 5G technology work?

There are several key performance indicators (KPIs) that 5G hopes to achieve. Basically, 5G will strengthen cellular networks by using more radio frequencies  along with new techniques to strengthen and multiply connection points. This means faster connection: cutting down the time between a command click on your device and the time it takes the phone to execute that function. This also will allow more devices to connect to one another.

Understanding Spectrum

To understand 5G, it is important to understand a bit about the electromagnetic radio spectrum. This video gives an overview to how cellphones use spectrum.

5G will bring faster speed and stronger services by using more spectrum. To establish a 5G network, it is necessary to secure spectrum for that purpose in advance. Governments and companies have to negotiate spectrum – usually through auctioning off bands, sometimes for huge sums. Spectrum allocation can be a very complicated and political process. Many experts fear that 5G, which requires lots of spectrum, threatens so-called ‘network diversity’ — the idea that spectrum should be used for a variety of purposes across government, business, and society — and may require allocating too much spectrum for this one purpose.

For more reading on spectrum allocation, see the Internet Society’s publication Innovations in Spectrum Management (2019).

Millimeter Waves

5G hopes to tap into new, unused bands at the top of the radio spectrum, known as millimeter waves (mmwaves). They are much less crowded than the lower bands and so they allow faster data transfers. But millimeter waves are tricky: they only travel a range of about 1.6 km when there is nothing in their way, and mmwaves can be absorbed by trees, by walls, and even by the air; and rain and fog can reduce the signal down to a distance of 1km. As a result, 5G will require many cell towers, rather than a few massive towers like we have with 4G. 5G will need towers every 100 meters outside, and every 50 meters inside. As will be detailed later, this is why 5G is really best suited for select parts of dense urban centers. The theoretical potential of millimeter waves is exciting, but in reality, most 5G carriers are trying to deploy 5G back down in the lower parts of the spectrum. Different carriers are experimenting now with different bands.

Don’t forget about fiber!

5G technology needs to run on fiber infrastructure. Fiber can be understood as the nervous system of a mobile network, connecting data centers to cell towers.

5G requires data centers, fiber, cell towers, and small cells

Investment in fiber is critical for 5G deployment and for broadband more generally, but fiber is expensive to install initially. (A 2017 Deloitte study estimated that 5G deployment in the United States would require at least $130 billion investment in fiber). At the moment, fiber is relatively scarce even in industrially developed countries, but it is especially scarce in industrially developing countries and in rural areas. Mobile operators, including the International Telecommunications Union, believe fiber is the best “backhaul” (connective material) due to its long life, high capacity, high reliability and ability to support very high traffic. But the initial investment is expensive and often cost-prohibitive to suppliers and operators, especially in less densely populated areas. 5G is sometimes advertised as a replacement for fiber; however, fiber and 5G are complementary technologies, and fiber cannot be ignored: if anything, fiber is a more secure investment that works with many other technologies, far beyond 5G.

The triangular chart below, from the International Telecommunications Union, is often used to explain the primary features that make up 5G technology (enhanced capacity, low latency, and enhanced connectivity) and the potential applications of these features.

Features that make up 5G technology: enhanced capacity, low latency, and enhanced connectivity, and the potential applications of these features

Who supplies 5G technology?

The market of 5G providers is very concentrated, even more so than previous generations. A handful of companies are capable of supplying telecommunications operators with the necessary technology. As of July 2020, the main suppliers are Huawei (based in China), Ericsson (based in Sweden), and Nokia (based in Finland. Many other carriers are working on developing their 5G technology; for example in the United States, Sprint and T-Mobile merged to work on 5G, raising competition concerns.

In 2019, the United States government passed a defense authorization spending act, NDAA Section 889, that essentially prohibits US agencies from using telecommunications equipment made by Chinese suppliers (for example, Huawei and ZTE). The restriction was put in place over fears that the Chinese government may use its telecommunications infrastructure for espionage (see more in the Risks section). NDAA Section 889 could apply to any contracts made with the US government, and so it is critical for organizations considering partnerships with Chinese suppliers to keep in mind the legal challenges of trying to engage with both the US and Chinese governments in relation to 5G.

Of course, this means that the choice of 5G manufacturers suddenly becomes much more limited. Chinese companies have by far the largest market share of 5G technology. Huawei has the most patents filed, and the strongest lobbying presence within the International Telecommunications Union.

The 5G playing field is fiercely political, with strong tensions between China and the United States. Because 5G technology is closely connected to chip manufacturing, it is important to keep an eye on “the chip wars”. Suppliers reliant on American and Chinese companies are likely to get caught in the crossfire as the trade war gets worse between these countries, because supply chains and manufacturing of equipment is often dependent on both countries. Peter Bloom, founder of Rhizomatica, points out that the global chip market is projected to grow to $22.41 billion by 2026 (from approximately $2.03 billion in 2020). Bloom cautions: “The push towards 5G encompasses a plethora of interest groups, particularly governments, financing institutions and telecommunications companies, that demands to be better analyzed in order to understand where things are moving, whose interests are being served and the possible consequences of these changes.”

 

Back to top

How is 5G relevant in civic space and for democracy?

Mobile money agency in Ghana. Roughly 50% of the world’s population is still not connected to the internet. Photo credit: Credit: John O'Bryan/ USAID.
Mobile money agency in Ghana. Roughly 50% of the world’s population is still not connected to the internet. Photo credit: Credit: John O’Bryan/ USAID.

5G is the first generation that does not prioritize access and connectivity for humans. 5G is a kind of ‘race-car’ technology — a super-connectivity for luxury use cases and specific environments, for instance, for enhanced virtual reality experiences and massively multiplayer video games. Many of the use cases advertised are theoretical or experimental and do not yet exist widely in our society, like remote surgery. (Indeed, telesurgery is one of the most often cited examples of the benefits of 5G, but it remains a prototype technology with many technical and legal issues to work out, that would also necessitate global network development.)

Access to education, health and information are fundamental rights; but multiplayer video games, virtual reality, and autonomous vehicles—all of which would rely on 5G – are not. 5G is a distraction from the critical infrastructure needed to get people online to fully enjoy their fundamental rights and to allow for democratic functioning. The focus on 5G actually diverts attention away from immediate solutions to improving access and bridging the digital divide.

Roughly 50% of the world’s population is still not connected to the internet, and they are primarily living in developing contexts. Unfortunately, 5G will not address this divide. What is needed to improve internet access in industrially developing contexts is more fiber, more internet access points (IXPs), more cell towers, more Internet routers, more wireless spectrum, and reliable electricity. In an industry white paper, only 1 page of 125 discusses a “scaled down” version of 5G that will address the needs of areas with extremely low average revenue per user (ARPU). These solutions include further limiting the geographic areas of service.

Digital trainers in Mugumu, Tanzania. 5G is not designed primarily to connect people, but rather to connect devices. Photo credit: Photo by Bobby Neptune for DAI.
Digital trainers in Mugumu, Tanzania. 5G is not designed primarily to connect people, but rather to connect devices. Photo credit: Photo by Bobby Neptune for DAI.

This presentation by the American corporation INTEL at an ITU regional forum in 2016, “5G for Developing Countries” advertises the usual aspirations for 5G: autonomous vehicles (labeled as “smart transportation”), virtual reality (labeled as “e-learning”), remote surgery (labeled as “e-health”), and sensors that can be placed for water management and agriculture. The Kenya ICT Action Network hosted a webinar in the spring of 2020 in partnership with HUAWEI. The presentation summary and slides are available here. Similar highly specific and theoretical future use-cases are advertised here as well: autonomous vehicles, industrial automation , smart homes, smart cities, smart logistics.

In both presentations, the emphasis is on connecting objects: showing how 5G is really adapted for big industries, not for individuals. Even if 5G were accessible in remote rural areas, individuals would likely have to purchase the most expensive, unlimited data plans to access 5G. This cost comes on top of having to acquire 5G-compatible smartphones and devices. Telecommunications companies themselves estimate that only 3% of Sub Saharan Africa will use 5G. It is estimated that by 2025, most people will still be using 3G (roughly 60%), and 4G (roughly 40%), which is a technology that has existed for 10 years.


5G Broadband / Fixed Wireless Access (FWA)

Because most people in industrially developing contexts connect to the internet via cellphone infrastructure and mobile broadband, what would be most useful to them would be “5G broadband”, also called 5G Fixed Wireless Access, or FWA. FWA is designed to replace “last mile” infrastructure with a wireless 5G network. Indeed, that “last mile” — that final distance to the end user — is often the biggest barrier to internet access across the world. But because the vast majority of these 5G networks will rely on physical fiber connection, FWA without fiber won’t be of the same quality. These FWA networks will also be more expensive for network operators to maintain than traditional infrastructure or “standard fixed broadband.”

This article by one of the top 5G providers, Ericsson, asserts that FWA will be one of the main uses of 5G, but the article shows that the operators will have a wide ability to adjust their rates, and also admits that many markets will still be addressed with 3G and 4G.

5G will not replace other kinds of internet connectivity for citizens

While 5G requires enormous investment in physical infrastructure, new generations of cellular Wi-Fi access are becoming more accessible and affordable. There is also an increasing variety of Community Network solutions, including Wi-Fi meshnets, and sometimes even community-owned fiber. For further reading see: 5G and the Internet of EveryOne: Motivation, Enablers, and Research Agenda, IEEE (2018). These are important alternatives to 5G that should be considered in any context (developed and developing, urban and rural).

“…if we are talking about thirst and lack of water, 5g is mainly a new type of drink cocktail, a new flavor to attract sophisticated consumers, as long as you live in profitable places for the service and you can pay for it. Renewal of communications equipment and devices is a business opportunity for manufacturers mainly, but not just the best “water” to the unconnected, rural, … (non-premium clients), even a problem as investment from operators gets first pushed by the trend towards satisfying high paying urban customers and not to spread connectivity to low pay social/universal inclusion customers…” – IGF Dynamic Coalition on Community Networks, in communication with the author of this resource.

It is critical not to forget about previous generation networks. 2G will continue to be important for providing broad coverage. 2G is already very present (around 95% in low- and middle- income countries), requires less data, and carries voice and SMS traffic well, which means that it is a safe and reliable option for many situations. Also, upgrading existing 2G sites to 3G or 4G is less costly than building new sites.

5G and the private sector

The technology that 5G facilitates (the Internet of Things , smart cities , smart homes) will encourage the installation of chips and sensors in an increasing number of objects. The devices 5G proposes to connect are not primarily phones and computers, but sensors, vehicles, industrial equipment, implanted medical devices, drones, cameras, etc. Linking these devices raises a number of security and privacy concerns, as will be explored in the Risks section .

The actors that stand to benefit most from 5G are not citizens or democratic governments, but corporate actors. The business model powering 5G is around industry access to connected devices: in manufacturing, in the auto industry, in transport and logistics, in power generation and efficiency monitoring, etc. Consider the automotive industry. 5G can be used for everything from tracking components to the supply chain and in the manufacturing process, all the way to providing mobile connectivity for passengers and the vehicles themselves,” explains Freddy Boom, Chief Country Officer at Greensill. 5G will boost the economic growth of those actors able to benefit from it, particularly those invested in automation, but it would be a leap to assume the distribution of these benefits across society.

The introduction of 5G will bring the private sector massively into public space through the network carriers, operators and other third parties behind the many connected devices. This overtaking of public space by private actors (usually foreign private actors), should be carefully considered from the lens of democracy and fundamental rights. Though the private sector has already entered our public spaces (streets, parks, shopping malls) with previous cellular networks, 5G’s arrival, bringing with it more connected objects and more frequent cell towers, will increase this presence.

Back to top

Opportunities

The advertised benefits of 5G usually fall into three areas outlined below. A fourth area of benefit will also be explained—though less often cited in the literature, it would be the most directly beneficial for citizens. It should be noted that these benefits will not be available soon, and perhaps never available widely. Many of these will remain elite services, only available under precise conditions and for high cost. Others will require standardization, legal and regulatory infrastructure, and widespread adoption before they can become a social reality.

The chart below, taken from a GSMA report, shows the generally listed benefits of 5G. The benefits in the white section could be achieved on previous networks like 4G, and those in the brown section would require 5G. This further emphasizes the fact that many of the objectives of 5G are actually possible without it.

Benefits of 5G

Augmented Reality & Tactile Internet

5G has many potential uses in entertainment, especially in gaming. Low latency will allow massively multiplayer games, higher quality video conferencing, faster downloading of high-quality videos, etc. Augmented and virtual reality are advertised as ways to create immersive experiences in online learning. 5G’s ability to connect devices will allow for wearable medical devices that can be controlled remotely (though not without cybersecurity risks). Probably the most exciting example of “tactile internet” is the possibility of remote surgery: an operation could be performed by a robot that is remotely controlled by a surgeon somewhere across the world. The systems necessary for this are very much in their infancy and will also depend on the development of other technology, as well as regulatory and legal standards and a viable business model.

Autonomous Vehicles

The major benefit of 5G will come in the automobile sector. It is hoped that the high speed of 5G will allow cars to coordinate safely with one another and with other infrastructure. For self-driving vehicles to be safe, they will need to be able to communicate with one another and with everything around them within milliseconds. The super speed of 5G is important for achieving this. (At the same time, 5G raises other security concerns for autonomous vehicles).

Machine-to-machine connectivity (IoT/smart home/smart city)

Machine-to-machine connectivity, or M2M, already exists in many devices and services , but 5G would further facilitate this. This stands to benefit industrial players (manufacturers, logistics suppliers, etc.) most of all, but could arguably benefit individuals or cities who want to track their use of certain resources like energy or water. Installed sensors can be used to collect data which can be analyzed for efficiency and the system can then be optimized towards a goal. Typical M2M applications in the smart home include thermostats and smoke detectors, consumer electronics and healthcare monitoring. It should be noted that many such devices can operate on 4G, 3G, and even 2G networks.

5G-based Fixed-Wireless Access (FWA) Can Provide Gigabit Broadband to Homes

Probably the most relevant benefit of 5G to industrially developing contexts will be the potential of FWA. FWA is less often cited in the marketing literature, because it does not allow the industrial benefits promised in full: because it allows breadth of connectivity rather than the revolutionary strength/intensity, it should be thought of as a different kind of “5G”. (See the 5G Broadband / Fixed Wireless Access section). As explained, FWA will still require infrastructure investments, and will not necessarily be more affordable than broadband alternatives due to the increasing power given to the carriers.

Back to top

Risks

The use of emerging technologies can also create risks in civil society programming. Read below on how to discern the possible dangers associated with 5G in DRG work, as well as how to mitigate for unintended – and intended – consequences.

Personal Privacy

With 5G connecting more and more devices, the private sector will be moving further into public space through sensors, cameras, chips, etc. Many of the connected devices will be things we never expected to be connected to the internet before: washing machines, toilets, cribs, etc. Some will even be inside our bodies, like smart pacemakers. The placement of devices with chips into our homes and environments eases the process of collecting data about us and other forms of surveillance.

A growing number of third-party actors have sophisticated methods for collecting and analyzing data related to us. Some devices may only ultimately collect meta-data, but this can still seriously reduce privacy. Meta-data is information connected to our communications that does not include the content of those communications: for example, numbers called, websites visited, geographical location or the time and date a call was made, etc. The EU’s highest court has ruled that this kind of information can be considered just as sensitive as the actual contents of communications because of insights that the data can offer into our private lives. 5G will allow telecommunications operators and other actors access to meta-data that can be assembled for insights about us that reduce our privacy.

Last, 5G requires many small cell base stations, so the presence of these towers will be much closer to people’s homes and workplaces, on streetlights, lamp posts, etc. This will make location tracking much more precise and make location privacy nearly impossible.

Espionage

For most, 5G will be supplied by foreign companies — in the case of Huawei and ZTE, governments that do not uphold human rights obligations or hold democratic values. For this reason, some governments are concerned about the potential of abuse of data and even about foreign spying. Several countries, including the United States, Australia and the United Kingdom, have taken actions to limit the use of Chinese equipment in their 5G networks due to fears of potential spying. The US has perhaps taken the strongest stance, through NDAA Section 889 mentioned above. However, a 2019 report on the security risks of 5G by the European Commission and European Agency for Cybersecurity warns against using a single supplier to provide 5G infrastructure because of espionage risks. The general argument against a single supplier (usually made against the Chinese supplier Huawei), is that if the supplier provides the core network infrastructure for 5G, the supplier’s government (China) will gain immense surveillance capacity, through meta-data, or even through a “back door” or intentionally installed vulnerability. Government spying through private sector and telecom equipment is commonplace, and China is not the only culprit. But the massive network capacity of 5G and the many connected devices collecting personal information will enhance the information at stake and the risk.

Cybersecurity Risks

As a general rule, the more digitally connected we are, the more vulnerable to cyber threats; 5G aims to make us and our devices ultra-connected. With 5G and the Internet of Things, the attack surface will be truly enormous. If a self-driving car on a smart grid is hacked or breaks down, this could bring immediate physical danger, not just information leakages. 5G centralizes infrastructure around a core, which makes it especially vulnerable. The complex supply chain also multiples risks: according to an EU coordinated cybersecurity risk assessment, “[t]he deployment of 5G networks is taking place in a complex global cybersecurity threat landscape, notably characterized by an increase in supply-chain attacks.” Because of the wide application of 5G based networks, 5G brings the increased possibility of internet shutdowns, endangering large parts of the network.

5G infrastructure can simply have technical deficiencies. Because 5G technology is still in pilot phases, many of these deficiencies are not yet known. 5G advertises some enhanced security functions, but security holes remain because devices will still be connected to older networks.

Massive Investment Costs and Questionable Returns

As A4AI explains, “The rollout of 5G technology will demand significant investment in infrastructure, including in new towers capable of providing more capacity, and bigger data centres running on efficient energy.” These costs will likely be passed on to consumers, who will have to purchase compatible devices and sufficient data.  5G requires massive infrastructure investment — even in places with strong 4G infrastructure, existing fiber-optic cables, good last-mile connections, and reliable electricity. Estimates for the total cost of 5G deployment — including investment in technology and spectrum — are as high as $2.7 trillion USD. There is a high cost of deploying dense clusters of 5G cells. Due to the many security risks, regulatory uncertainties, and generally untested nature of the technology, 5G is not necessarily a safe investment even in wealthy urban centers. The high cost of introducing 5G will be an obstacle for expansion and prices are unlikely to fall enough to make 5G widely affordable.

Because this is such a complex new product, there is a risk of purchasing low-quality equipment. 5G is heavily reliant on software and services from third-party suppliers, which multiplies the chance of defects in parts of the equipment (poorly written code, poor engineering, for example). The process of patching these flaws can be long, complicated, and costly. Some vulnerabilities may go unidentified for a long time but can suddenly cause severe security problems. Lack of compliance to industry or legal standards could cause similar problems. In some cases, new equipment may not be flawed or faulty, but it may simply be incompatible with existing equipment or with other purchases from other suppliers. With so many third- party suppliers in the mix, this may result in incompatible parts. Moreover, there will be large costs just to running the 5G network properly: securing it from cyberattacks, patching holes/addressing flaws, and keeping up the material infrastructure. Skilled and trusted human operators are needed for these tasks.

Foreign Dependency and Geopolitical Risks

Installing new infrastructure means dependency on private sector actors, usually from foreign countries. Over-reliance on foreign private actors raises multiple concerns as mentioned, related to cybersecurity, privacy, espionage, excessive cost, compatibility, etc. Because there are only a handful of actors that are fully capable of supplying 5G, there is also the risk of becoming dependent on a foreign country. With current geopolitical tensions between the US and China, countries trying to install 5G technology may get caught in the crossfire of a trade war. As Jan-Peter Kleinhans, security and 5G expert at Stiftung Neue Verantwortung (SNV) explains “The case of Huawei and 5G is part of a broader development in information and communications technology (ICT). We are moving away from a unipolar world with the US as the technology leader, to a bipolar world in which China plays an increasingly dominant role in ICT development”. The financial burdens of this bipolar world will be passed onto suppliers and customers.

Class/Wealth & Urban/Rural Divides

“Without a comprehensive plan for fiber infrastructure, 5G will not revolutionize Internet access or speeds for rural customers. So anytime the industry is asserting that 5G will revolutionize rural broadband access, they are more than just hyping it, they are just plainly misleading people.” Ernesto Falcon, the Electronic Frontier Foundation.

5G is not a lucrative investment for carriers in more rural areas and developing contexts, where the density of potentially connected devices is lower. There is industry consensus, supported by the ITU itself, that the initial deployment of 5G will be in dense urban areas, particularly wealthy areas with industry presence. Rural and poorer areas with less existing infrastructure are likely to be left behind because it is not a good commercial investment for the private sector. For rural and even suburban areas, millimeter waves and cellular networks that require dense cell towers are not going to be the solution. As a result, 5G will not bridge the digital divide for lower income and urban areas. It will reinforce it, by giving better, super-connectivity to those who already have access and can afford even more expensive access and devices, while making the cost of connectivity high for others.

Energy Use and Environmental Impact

Huawei has shared that the typical 5G site has power requirements over 11.5 kilowatts, almost 70% more than sites deploying 2G, 3G and 4G. Some estimate 5G technology will use two to three times more energy than previous mobile technologies. All agree It will require more infrastructure, which means more power supply, and more battery capacity, all of which will have environmental consequences. The most significant environmental issues associated with implementation will come from manufacturing the many component parts, along with the proliferation of new devices that will use the 5G network. 5G will encourage more demand and consumption of digital devices, and therefore the creation of more e-waste, which will also have serious environmental consequences. According to Peter Bloom, founder of Rhizomatica, most environmental damages of 5G will take place in the global south. This will include damage to the environment and to communities where the mining of materials and minerals takes place, as well as pollution from the electronic waste. In the United States, the National Oceanic and Atmospheric Administration and NASA reported last year that the decision to open up high spectrum bands (24 gigahertz spectrum) would affect weather forecasting capabilities for decades.

Back to top

Questions

To understand the potential of 5G for your work environment or community, ask yourself these questions to try to assess if 5G is the most appropriate, secure, cost effective and human-centric solution:

  1. Are people already able to connect to the internet sufficiently? Is the necessary infrastructure in place for people to connect to the internet, through 3 or 4G, or through Wi-Fi (fiber, internet access points, electricity)?
  2. Are the conditions in place to effectively deploy 5G? That is, is there sufficient fiber backhaul and 4G infrastructure (recall that 5G is not yet a standalone technology).
  3. What specific use case(s) do you have for 5G that would not be achievable using a previous generation network?
  4. What other plans are being made to address the digital divide, through Wi-Fi deployment and mesh networks, digital literacy and digital training, etc.?
  5. Who stands to benefit from 5G deployment? Who will be able to access 5G? Do they have the appropriate devices and sufficient data? Will access be affordable?
  6. Who is supplying the infrastructure? How much can they be trusted regarding quality, pricing, security, data privacy , and espionage?
  7. Do the benefits of 5G outweigh the costs and risks (in relation to security, financial investment, potential geopolitical consequences)
  8. Are there sufficient skilled human resources to maintain the 5G infrastructure? How will failures and vulnerabilities be dealt with?

Back to top

Case Studies

South Korea, China, and the United States are the countries with the most 5G technology deployed to date. Still, 5G infrastructure is mainly in its pilot stages and far from achieving the advertised potential.

Nigeria

Nigeria had plans to roll out 5G in multiple major cities before 2020. The Nigerian Telecommunications Commission held a three-month trial period in November 2019, but the planned installation was then decommissioned. One of the purposes of the trial was to study health and security challenges, and security agencies and other relevant stakeholders were invited to participate. After the government called off the installation, the NCC explained that it is prioritizing a policy of “technology neutrality” and that it encourages the continued development of secure technology. Data depletion issues were also a concern: users quickly replete data at 4G levels, and it was expected that 5G would magnify this problem.

Brazil

Ericsson (based in Sweden) is investing 1 billion reais (or $238.30 million) in Brazil to create its first 5G assembly line in Latin American. The company argues that this will create jobs and attract investment, but it is also pressuring Brazil to auction its spectrum quickly, which should raise red flags. Like the UK and many other countries, Brazil is cautious about allowing Chinese company Huawei too big of a role in their infrastructure. The head of the country’s Institutional Security Cabinet, General Augusto Heleno, said the government is gathering information, but not going to entirely ignore Huawei’s bid: “We can’t pretend we’re not watching… The big threat in all this 5G discussion is about the fact that it will allow whoever owns the technology to know who you are, how much do you earn and what’s in your bank account.”

Latin America and the Caribbean

A recent publication by the InterAmerican Development Bank and the Government of South Korea on 5G in Latin American and Caribbean (LAC) countries encourages them to adopt 5G, but cautions on the many challenges these countries will face: high implementation costs, the need to secure spectrum, the need to develop institutions and regulatory systems, need for financial support, etc.

The United Kingdom

In the United Kingdom, a dedicated Commission was established within the Department of Culture, Media, and Sport (DCMS) to grant the authority and responsibility to build 5G infrastructure with DCMS, and digital infrastructure groups were organized to promote the exchange of views and cooperation among ministries. Even with all this coordination, 5G has caused fear, confusion, and violence in the country as we have seen during the pandemic. The UK is also in a tricky spot because of tensions between China and the United States – in January of 2020, they ignored pressure from the US administration and allowed Huawei to build “non-core” parts of their 5G network. The US government warned that they could end intelligence sharing with allies that use Huawei’s equipment, which could be a blow to the UK. Meanwhile, this Guardian article from June 2019 describes the experience of 5G connection for users who bought a 5G phone to access it.

Back to top

References

Find below the works cited in this resource.

Additional Resources

Back to top

Categories

Digital Development in the time of COVID-19